The resultants of quadratic binomial complete intersections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Solutions to Binomial Complete Intersections

We study the problem of counting the total number of affine solutions of a system of n binomials in n variables over an algebraically closed field of characteristic zero. We show that we may decide in polynomial time if that number is finite. We give a combinatorial formula for computing the total number of affine solutions (with or without multiplicity) from which we deduce that this counting ...

متن کامل

Veronesean Almost Binomial Almost Complete Intersections

The second Veronese ideal In contains a natural complete intersection Jn generated by the principal 2-minors of a symmetric (n× n)-matrix. We determine subintersections of the primary decomposition of Jn where one intersectand is omitted. If In is omitted, the result is the other end of a complete intersection link as in liaison theory. These subintersections also yield interesting insights int...

متن کامل

On Binomial Set-Theoretic Complete Intersections in Characteristic p

Using arithmetic conditions on affine semigroups we prove that for a simplicial toric variety of codimension 2 the property of being a set-theoretic complete intersection on binomials in characteristic p holds either for all primes p, or for no prime p, or for exactly one prime p.

متن کامل

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

On the Regularity of Products and Intersections of Complete Intersections

This paper proves the formulae reg(IJ) ≤ reg(I) + reg(J), reg(I ∩ J) ≤ reg(I) + reg(J) for arbitrary monomial complete intersections I and J , and provides examples showing that these inequalities do not hold for general complete intersections.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2020

ISSN: 1939-2346

DOI: 10.1216/jca.2020.12.217